首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9342篇
  免费   1803篇
  国内免费   1024篇
化学   6576篇
晶体学   85篇
力学   563篇
综合类   52篇
数学   1081篇
物理学   3812篇
  2024年   10篇
  2023年   224篇
  2022年   216篇
  2021年   343篇
  2020年   395篇
  2019年   373篇
  2018年   361篇
  2017年   293篇
  2016年   513篇
  2015年   439篇
  2014年   560篇
  2013年   751篇
  2012年   925篇
  2011年   902篇
  2010年   617篇
  2009年   604篇
  2008年   624篇
  2007年   531篇
  2006年   498篇
  2005年   407篇
  2004年   311篇
  2003年   231篇
  2002年   188篇
  2001年   162篇
  2000年   176篇
  1999年   209篇
  1998年   163篇
  1997年   155篇
  1996年   175篇
  1995年   142篇
  1994年   119篇
  1993年   90篇
  1992年   99篇
  1991年   56篇
  1990年   73篇
  1989年   54篇
  1988年   26篇
  1987年   28篇
  1986年   37篇
  1985年   38篇
  1984年   13篇
  1983年   16篇
  1982年   6篇
  1981年   4篇
  1980年   6篇
  1979年   2篇
  1977年   1篇
  1976年   2篇
  1957年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Demand for high-density press and sinter components is increasing day by day. Of the different ways to improve the sinter density, the addition of nanopowder to the conventional micrometer-sized metal powder is an effective solution. The present investigation is aimed at studying the surface chemistry of iron nanopowder coated with graphitic carbon, which is intended to be mixed with the conventional iron powder. For this purpose, iron nanopowder in the size range of 30 nm to submicron (less than 1 micron) was investigated using thermogravimetry at different temperatures: 400°C, 600°C, 800°C, 1000°C, and 1350°C. The X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and high-resolution scanning electron microscopy (HR-SEM) were used for characterizing the powder as well as samples sintered at different temperatures. The presence of iron, oxygen, carbon, chromium, and zinc were observed on the surface of the nanopowder. Iron was present in oxide state, although a small metallic iron peak at 707 eV was also observed in the XPS spectra obtained from the surface indicating the oxide scale to be maximum of about 5 nm in thickness. For the sample treated at 600°C, presence of manganese was observed on the surface. Thermogravimetry results showed a two-step mass loss with a total mass loss of 4 wt.% when heated to 1350°C where the first step corresponds to the surface oxide reduction.  相似文献   
52.
A novel micro matrix solid phase dispersion method was successfully used for the extraction of quaternary alkaloids in Phellodendri chinensis cortex. The elution of target compounds was accomplished with sodium hexanesulfonate as the eluent solvent. A neutral ion pair was formed between ion-pairing reagent and positively charged alkaloids in this process, which was beneficial for selectively extraction of polar alkaloids. Several parameters were optimized and the optimal conditions were listed as follows: silica gel as the sorbent, silica to sample mass ratio of 1:1, the grinding time of 1 min. The exhaustive elution of targets was achieved by 200 µL methanol/water (9:1) containing 150 mM sodium hexane sulfonate at pH 4.5. The method validation covered linearity, recovery, precision of intraday and interday, limits of detection, limits of quantitation, and repeatability. This established method was rapid, simple, environmentally friendly, and highly sensitive.  相似文献   
53.
The development of cost-effective and durable oxygen electrocatalysts remains highly critical but challenging for energy conversion and storage devices. Herein, a novel FeNi alloy nanoparticle core encapsulated in carbon shells supported on a N-enriched graphene-like carbon matrix (denoted as FeNi@C/NG) was constructed by facile pyrolyzing the mixture of metal salts, glucose, and dicyandiamide. The in situ pyrolysis of dicyandiamide in the presence of glucose plays a significant effect on the fabrication of the porous FeNi@C/NG with a high content of doped N and large specific surface area. The optimized FeNi@C/NG catalyst displays not only a superior catalytic performance for the oxygen reduction reaction (ORR, with an onset potential of 1.0 V and half-wave potential of 0.84 V) and oxygen evolution reaction (OER, the potential at 10 mA cm−2 is 1.66 V) simultaneously in alkaline, but also outstanding long-term cycling durability. The excellent bifunctional ORR/OER electrocatalytic performance is ascribed to the synergism of the carbon shell and FeNi alloy core together with the high-content of nitrogen doped on the large specific surface area graphene-like carbon.  相似文献   
54.
The optimization of three-dimensional (3D) MXene-based electrodes with desired electrochemical performances is highly demanded. Here, a precursor-guided strategy is reported for fabricating the 3D SnS/MXene architecture with tiny SnS nanocrystals (≈5 nm in size) covalently decorated on the wrinkled Ti3C2Tx nanosheets through Ti−S bonds (denoted as SnS/Ti3C2Tx-O). The formation of Ti−S bonds between SnS and Ti3C2Tx was confirmed by extended X-ray absorption fine structure (EXAFS). Rather than bulky SnS plates decorated on Ti3C2Tx (SnS/Ti3C2Tx-H) by one-step hydrothermal sulfidation followed by post annealing, this SnS/Ti3C2Tx-O presents size-dependent structural and dynamic properties. The as-formed 3D hierarchical structure can provide short ion-diffusion pathways and electron transport distances because of the more accessible surface sites. In addition, benefiting from the tiny SnS nanocrystals that can effectively improve Na+ diffusion and suppress structural variation upon charge/discharge processes, the as-obtained SnS/Ti3C2Tx-O can generate pseudocapacitance-dominated storage behavior enabled by engineered surface reactions. As predicted, this electrode exhibits an enhanced Na storage capacity of 565 mAh g−1 at 0.1 A g−1 after 75 cycles, outperforming SnS/Ti3C2Tx-H (336 mAh g−1), SnS (212 mAh g−1), and Ti3C2Tx (104 mAh g−1) electrodes.  相似文献   
55.
Lithium-sulfur batteries have been considered as potential electrochemical energy-storage devices owing to their satisfactory theoretical energy density. Nonetheless, the inferior conversion efficiency of polysulfides in essence leads to fast capacity decay during the discharge/charge cycle. In this work, it is successfully demonstrated that the conversion efficiency of lithium polysulfides is remarkably enhanced by employing a well-distributed atomic-scale Fe-based catalyst immobilized on nitrogen-doped graphene (Fe@NG) as a coating of separator in lithium-sulfur batteries. The quantitative electrocatalytic efficiency of the conversion of lithium polysulfides is determined through cyclic voltammetry. It is also proven that the Fe-NX configuration with highly catalytic activity is quite beneficial for the conversion of lithium polysulfides. In addition, the adsorption and permeation experiments distinctly indicate that the strong anchoring effect, originated from the charge redistribution of N doping into the graphene matrix, inhibits the movement of lithium polysulfides. Thanks to these advantages, if the as-prepared Fe@NG catalyst is combined with polypropylene and applied as a separator (Fe@NG/PP) in Li-S batteries, a high initial capacity (1616 mA h g−1 at 0.1 C), excellent capacity retention (93 % at 0.2 C, 70 % at 2 C), and superb rate performance (820 mA h g−1 at 2 C) are achieved.  相似文献   
56.
Sulfur-containing scaffold, as a ubiquitous structural motif, has been frequently used in natural products, bioactive chemicals and pharmaceuticals, particularly C−S/N−S bonds are indispensable in many biological important compounds and pharmaceuticals. Development of mild and general methods for C−S/N−S bonds formation has great significance in modern research. Iodine and its derivatives have been recognized as inexpensive, environmentally benign and easy-handled catalysts or reagents to promote the construction of C−S/N−S bonds under mild reaction conditions, with good regioselectivities and broad substrate scope. Especially based on this, several new strategies, such as oxidation relay strategy, have been greatly developed and accelerated the advancement of this field. This review focuses on recent advances in iodine and its derivatives promoted hybridized C−S/N−S bonds formation. The features and mechanisms of corresponding reactions are summarized and the results of some cases are compared with those of previous reports. In addition, the future of this domain is discussed.  相似文献   
57.
Numerous studies have shown compelling evidence that incorporation of an inversion of polarity site (IPS) in G-rich sequences can affect the topological and structural characteristics of G-quadruplexes (G4s). Herein, the influence of IPS on the formation of a previously studied intramolecular parallel G4 of d(G3TG3TG3TG3) (TTT) and its stacked higher-order structures is explored. Insertion of 3′–3′ or 5′–5′ IPS did not change the parallel folding pattern of TTT. However, both the species and position of the IPS in TTT have a significant impact on the G4 stability and end-stacking through the alteration of G4–G4 interfaces properties. The data demonstrate that one base flip in each terminal G-tetrad can stabilize parallel G4s and facilitate intermolecular packing of monomeric G4s. Such modifications can also enhance the fluorescence and enzymatic performances by promoting interactions between parallel G4s with N-methyl mesoporphyrin IX (NMM) and hemin, respectively.  相似文献   
58.
59.
Natural products with a variety of pharmacological effects are important sources for commercial drugs, and it is very crucial to develop effective techniques to selectively extract and isolate bioactive natural components from the plants against the background of sustainable development. Ionic liquids (ILs) are a kind of designable material with unique physicochemical properties, including good thermal stability, negligible vapor pressure, good solvation ability, etc. ILs have already been used in pharmaceuticals for extraction, purification, drug delivery, etc. It has been reported that multi-interactions, like hydrogen bonding, hydrophobic interactions, play important roles in the extraction of bioactive components from the plants. In this review, recent progress in the understanding of scientific essence of hydrogen bonding, the special interaction, in ILs was summarized. The extraction of various natural products, one important area in pharmaceutical, by conventional and functional ILs as well as the specific roles of multi-interactions in this process were also reviewed. Moreover, problems existing in bioactive compound extraction by ILs and the future developing trends of this area are given, which might be helpful for scientists, especially beginners, in this field.  相似文献   
60.
Nonlinear Dynamics - The Wada index based on the weighted and truncated Shannon entropy is presented in this paper. The proposed Wada index can detect if a given basin boundary is a Wada boundary....  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号